We report Monte Carlo simulations of phase behavior of colloidal suspensions with near-critical binary solvents using effective pair potentials from experiments. At off-critical solvent composition, the calculated phase diagram agrees well with measurements of the experimental system, indicating that many-body effects are limited. Close to the critical composition, however, agreement between experiment and simulation becomes poorer, signaling the increased importance of many-body effects. Both at and off the critical solvent concentration, the colloidal phase diagram is qualitatively similar to those of molecular systems and obeys the principle of corresponding states with one striking difference: it occurs in a narrow temperature interval of <1 • C below the solvent phase separation temperature.