2019
DOI: 10.1016/j.enbuild.2019.109422
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the indoor thermal data for heating season based on short-term measurements to calibrate the simulation set-points

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 21 publications
0
2
0
Order By: Relevance
“…The experiment was developed for a big-scale building and a detailed building energy model was developed. The results of the prediction were used as feedback data to improve simulation accuracy [11].…”
Section: Literature Reviewmentioning
confidence: 99%
See 1 more Smart Citation
“…The experiment was developed for a big-scale building and a detailed building energy model was developed. The results of the prediction were used as feedback data to improve simulation accuracy [11].…”
Section: Literature Reviewmentioning
confidence: 99%
“…Figs. [8][9][10][11][12][13][14][15] show that both the predicted data of ANN and ANFIS are relatively matching the measured data. For both temperature and humidity, The ANN predicted results' variation seems to be more realistic and closer to the measured data.…”
Section: Comparing the Modelsmentioning
confidence: 99%
“…Koruma ile entegre enerji verimliği ve ısıl konfora yönelik izleme çalışmaları irdelendiğinde izleme sürelerinin farklılık gösterdiği saptanmıştır. Bazı çalışmalarda en az bir yıl süreyle uzun dönemli izleme yaklaşımı uygulanırken [12][13][14][15] diğer çalışmalar farklı mevsimlerde yürütülen kısa dönem/tekrarlı izleme çalışmaları [16][17][18][19] aracılığıyla bina performans analizleri yürütmüştür. Literatürde yer alan çalışmalar incelendiğinde hem uzun ve hem de kısa süreli izleme verilerinin tarihi binaların enerji performansının saptanmasında kullanılabildiği ve bu verilerin simülasyona entegre edildiği, ileriye dönük iyileştirmelerin potansiyellerinin simülasyon çıktıları üzerinden değerlendirildiği görülmüştür [13,[20][21][22].…”
Section: Giriş (Introduction)unclassified
“…For instance, DDM-MPC for heating, ventilation, and air conditioning (HVAC) systems were developed for a university building [10], an airport [11], and a residential building [12,13]. DDMs for thermal load prediction were developed for a single building [14] and for a non-residential district [15]. On the other hand, Park & Park [16] performed a comparative analysis on the predictability of natural ventilation rates.…”
Section: Introductionmentioning
confidence: 99%