Abstract:This paper looks at the problem of employee turnover, which has considerable influence on organizational productivity and healthy working environments. Using a publicly available dataset, key factors capable of predicting employee churn are identified. Six machine learning algorithms including decision trees, random forests, naïve Bayes and multi-layer perceptron are used to predict employees who are prone to churn. A good level of predictive accuracy is observed, and a comparison is made with previous finding… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.