Background: Stereotactic radiosurgery (SRS) is considered a promising treatment for brain metastases (BM) with better healing efficacy, relatively faster treatment time, and lower neurotoxicity, which can achieve local control rates above 70%. Although SRS improves the local control of BM, this may not translate into improvements in survival time. Thus, screening out the key factors influencing the treatment response to SRS, instead of the survival time following SRS, might be of more significance. This may assist doctors when making adjustments to treatment strategies for patients with BM. Methods: This is a retrospective review of 696 patients with BM who were treated with SRS at Huashan Hospital, Fudan University between June 2015 and February 2020. According to the patients’ treatment response to SRS, the patients were divided into an improved group (IG) and a progressive group (PG). The clinical data and magnetic resonance imaging (MRI) performed pre- and post-treatment were collected for the two groups. Five clinical variables (gender, age, Karnofsky performance status (KPS), primary tumor type, and extracranial lesion control) and seven radiological manifestations (location, number, volume, maximum diameter, edema index (EI), diffusion weighted imaging (DWI) sequence signal, and enhanced pattern) were selected and compared. A stepwise regression analysis was performed in order to obtain the best prediction effect of a group of variables and their regression coefficients, and finally to build an SRS treatment response scoring model based on the coefficients. The performance of the model was evaluated by calculating the AUC and performing the Hosmer–Lemeshow test. Results: A total of 323 patients were enrolled in the study based on the inclusion and exclusion criteria, including 209 patients in the IG and 114 patients in the PG. In the Chi-square test and t-test analysis, the significant p values of KPS, extracranial lesion control, volume, and EI were less than 0.05. Moreover, the cut-off values for volume and EI were 1801.145 mm3 and 3.835, respectively. The scoring model that was based on multivariate logistic regression coefficients performed better, achieving AUCs of 0.755 ± 0.062 and 0.780 ± 0.061 for the internal validation and validation cohorts, with p values of 0.168 and 0.073 for the Hosmer–Lemeshow test. Conclusions: KPS, extracranial lesion control, tumor volume, and EI had a certain correlation with the treatment response to SRS. Scoring models that are based on these variables can accurately predict the treatment response of patients with BM to SRS, thereby assisting doctors to make an appropriate first treatment strategy for patients with BM to a certain degree.