Predicting the pro-longevity or anti-longevity effect of model organism genes with enhanced Gaussian noise augmentation-based contrastive learning on protein–protein interaction networks
Ibrahim Alsaggaf,
Alex A Freitas,
Cen Wan
Abstract:Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or anti-longevity effect of four model organisms’ ageing-related genes by exploiting protein–protein interaction (PPI) networks. The experimental results suggest that EGsC… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.