This paper is a review on the tensile properties of natural fibre reinforced polymer composites. Natural fibres have recently become attractive to researchers, engineers and scientists as an alternative reinforcement for fibre reinforced polymer (FRP) composites. Due to their low cost, fairly good mechanical properties, high specific strength, non-abrasive, eco-friendly and bio-degradability characteristics, they are exploited as a replacement for the conventional fibre, such as glass, aramid and carbon. The tensile properties of natural fibre reinforce polymers (both thermoplastics and thermosets) are mainly influenced by the interfacial adhesion between the matrix and the fibres. Several chemical modifications are employed to improve the interfacial matrix-fibre bonding resulting in the enhacement of tensile properties of the composites. In general, the tensile strengths of the natural fibre reinforced polymer composites increase with fibre content, up to a maximum or optimum value, the value will then drop. However, the Young's modulus of the natural fibre reinforced polymer composites increase with increasing fibre loading.Khoathane et al. [1] found that the tensile strength and Young's modulus of composites reinforced with bleached hemp fibers increased incredibly with increasing fiber loading. Mathematical modelling was also mentioned. It was discovered that the rule of mixture (ROM) predicted and experimental tensile strength of different natural fibres reinforced HDPE composites were very close to each other. Halpin-Tsai equation was found to be the most effective equation in predicting the Young's modulus of composites containing different types of natural fibers.