Predicting travel mode choice with a robust neural network and Shapley additive explanations analysis
Li Tang,
Chuanli Tang,
Qi Fu
et al.
Abstract:Predicting and understanding travellers’ mode choices is crucial to developing urban transportation systems and formulating traffic demand management strategies. Machine learning (ML) methods have been widely used as promising alternatives to traditional discrete choice models owing to their high prediction accuracy. However, a significant body of ML methods, especially the branch of neural networks, is constrained by overfitting and a lack of model interpretability. This study employs a neural network with fe… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.