Uniaxial Compressive Strength (UCS) is considered as one of the most important parameters in designing rock structures. Determination of this parameter requires preparation of rock samples which is costly and time consuming. Moreover discrepancy of laboratory test results is often observed. To overcome the drawbacks of traditional method of UCS measurement, in this paper, predictive models based on neuro-genetic approach and multivariable regression analysis have been developed for predicting compressive strength of different type of rocks. Coefficient of determinatoin (R2) and the Mean Square Error (MSE) were calculated for comparison of the models' efficiency. It was observed that accuracy of the neuro-genetic model is significantly better than regression model. For the neuro-genetic and regression models, R2 and MSE were equal to 95.89 % and 0.0045 and 77.4 % and 1.61, respectively. According to sensitivity analysis for neurogenetic model, Schmidt rebound number is the most effective parameter in predicting UCS.