2024
DOI: 10.1017/s1474746424000447
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Unpaid Care Work in India Using Random Forest: An Analysis of Socioeconomic and Demographic Factors

Saumya Tripathi

Abstract: Given the complexity of unpaid care work in the Indian context, this study employs advanced machine learning techniques to unveil hidden patterns within the 2019 time-use survey dataset. The study pursues a dual objective: (1) assessing the superior predictive capability of machine learning over traditional statistical methods in estimating unpaid care work time, and (2) unveiling the sociodemographic determinants of extended unpaid care work durations. The results emphasise the exceptional predictive performa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?