2022
DOI: 10.3389/fpsyg.2022.855379
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Verbal Learning and Memory Assessments of Older Adults Using Bayesian Hierarchical Models

Abstract: Verbal learning and memory summaries of older adults have usually been used to describe neuropsychiatric complaints. Bayesian hierarchical models are modern and appropriate approaches for predicting repeated measures data where information exchangeability is considered and a violation of the independence assumption in classical statistics. Such models are complex models for clustered data that account for distributions of hyper-parameters for fixed-term parameters in Bayesian computations. Repeated measures ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?