Estimation of pillar stress is a crucial task in underground mining. This is used to determine pillar dimensions, room width, roof conditions, and general mine layout. There are several methods for estimating induced stresses due to underground excavations, i.e., empirical methods, numerical solutions, and currently artificial intelligence (AI). AI based techniques are gradually gaining popularity especially for problems involving uncertainty. In this paper, an attempt has been made to predict stresses developed in the pillars of bord and pillar mining using artificial neural network. A comparison has also been done to compare the obtained results with the boundary element method as well as measured field values. For this purpose, a multilayer perceptron neural network model was developed. A number of architectures with different hidden layers and neurons were tried to get the best solution, and the architecture 5-20-8-1 was found to be an optimum solution. Sensitivity analysis was also carried out to understand the influence of important input parameters on pillar stress concentration.