Most existing sediment transport formulae to estimate transport rate in the coastal environment have a restricted range of applicability and are often used beyond this range. The aim of this paper is to investigate the limits of five of these formulae: the Bijker, Bailard, Van Rijn, Dibajnia and Watanabe, and Ribberink formulae. The sensitivity of these formulae to wave orbital velocity, wave period, wave asymmetry, sediment grain size, and steady current has been studied and tested against data for large velocities where significant errors can appear. The formulae behave in very different ways if one of the main parameters is slightly modified, particularly when fine sediments are present and phase-lag effect appears. But important discrepancies between formulae can also be observed for medium sand. At last, the wave-related sediment transport (due to wave asymmetry) has great importance for the morphodynamic and is only accounted for in the Bailard, Dibajnia and Watanabe, and Ribberink formulae.