The contact surface of the wheel with the airport surface is important for the safety of flight operations in the ground manoeuvring area. The area of the contact surface, its shape and stress distribution at the pavement surface are the subject of many scientists’ considerations. However, there are only a few research studies which include pressure and vertical load directly and its influence on tire-pavement contact area. There are no research studies which take into account aircraft tires. This work is a piece of an extensive research project which aims to develop a device and a method for continuous measurement of the natural airport pavement’s load capacity. One of the work elements was to estimate the relationship between wheel pressure and wheel pressure on the surface, and the area of the contact surface. The results of the research are presented in this article. Global experience in this field is cited at the beginning of the article. Then, the theoretical basis for calculating the wheel with the road surface contact area was presented. Next, the author’s research views and measurement method are presented. Finally, the obtained test results and comments are shown. The tests were carried out for four types of tires. Two of them were airplane tires from the PZL M28 Skytruck/Bryza and Sukhoi Su-22 aircraft. Two more came from the airport ASFT (airport surface friction tester) friction tester-one smooth ASTM; the other smooth retreaded type T520. The tires were tested in a pressure range from 200 to 800 kPa. The range of vertical wheel load on the pavement was 3.23–25.93 kN for airplane tires, and 0.8–4.0 kN for friction tester tires. The tests proved a significant influence of the wheel pressure value and wheel pressure on the surface on the obtained contact surface area of the wheel with the surface. In addition, it was noted that the final shape and size of the contact surface is affected by factors other than wheel pressure, tire pressure and dimensions.