2004
DOI: 10.5038/2375-0901.7.1.3
|View full text |Cite
|
Sign up to set email alerts
|

Prediction Model of Bus Arrival and Departure Times Using AVL and APC Data

Abstract: Abstract Abstract AbstractThe emphasis of this research effort was on using AVL and APC dynamic Journal of Public Transportation, Vol. 7, No. 1, 2004 4 2 transit stop-based control actions to avoid such deviations before their occurrence, hence allowing for proactive control, as opposed to the traditional reactive control, which attempts to recover the schedule after deviations occur.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
79
0
3

Year Published

2011
2011
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 155 publications
(83 citation statements)
references
References 6 publications
0
79
0
3
Order By: Relevance
“…For example, Maclean and Dailey (2002) report on the construction of one system that provides predictions of transit vehicle stop departure times to potential riders with mobile phones. Shalaby and Farhan (2004) describe another system that uses AVL and passenger count data to forecast stop arrival times for both potential customers as well as those controlling the public transportation system.…”
Section: Example Data and Pre-processingmentioning
confidence: 99%
See 2 more Smart Citations
“…For example, Maclean and Dailey (2002) report on the construction of one system that provides predictions of transit vehicle stop departure times to potential riders with mobile phones. Shalaby and Farhan (2004) describe another system that uses AVL and passenger count data to forecast stop arrival times for both potential customers as well as those controlling the public transportation system.…”
Section: Example Data and Pre-processingmentioning
confidence: 99%
“…A number of alternate approaches for travel time estimation are available based on neural networks (Huisken and Berkum 2003), time series analysis (Smith et al 2002), and Kalman filters (Shalaby and Farhan 2004). The Kalman filter method is used here to enable a comparison between different predictive techniques.…”
Section: Figure 5 Link Travel Times and Previous Bus Tardinessmentioning
confidence: 99%
See 1 more Smart Citation
“…Также в оценке времени прибытия широко использу-ются модели, основанные на фильтрации Калмана [8,9,10]. Хотя основной функцией моделей такого рода является прогноз текущего состояния системы, они могут служить основой для оценки будущих значений или для исправления предыдущих прогнозов.…”
Section: Introductionunclassified
“…Хотя основной функцией моделей такого рода является прогноз текущего состояния системы, они могут служить основой для оценки будущих значений или для исправления предыдущих прогнозов. Модель может адаптироваться к колебаниям транспортного потока с зависящими от времени параметрами [9]; является эф-фективной для составления краткосрочных прогнозов.…”
Section: Introductionunclassified