2023
DOI: 10.1002/cam4.6540
|View full text |Cite
|
Sign up to set email alerts
|

Prediction model of ocular metastasis from primary liver cancer: Machine learning‐based development and interpretation study

Jin‐Qi Sun,
Shi‐Nan Wu,
Zheng‐Lin Mou
et al.

Abstract: BackgroundOcular metastasis (OM) is a rare metastatic site of primary liver cancer (PLC). The purpose of this study was to establish a clinical predictive model of OM in PLC patients based on machine learning (ML).MethodsWe retrospectively collected the clinical data of 1540 PLC patients and divided it into a training set and an internal test set in a 7:3 proportion. PLC patients were divided into OM and non‐ocular metastasis (NOM) groups, and univariate logistic regression analysis was performed between the t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 39 publications
0
1
0
Order By: Relevance
“…The ML model based on extreme gradient boosting (XGB) was selected in our study because of its generalizability, low risk of overfitting, high interpretability [25], and high scalability [34]. XGB has been confirmed to be a reliable method for recognizing patterns in other diseases such as lupus erythematosus [16], traumatic brain injury-induced coagulopathy [35], epilepsy [36], diabetes [37], Alzheimer's disease [38,39], HIV [40,41], or different types of cancer [42][43][44][45][46]. We, therefore, used the aforementioned ML technique to determine which factors were most predictive of disease severity in a closed group of patients hospitalized for COVID-19 during the first two months of the pandemic, a time when the population did not yet have herd immunity and had not yet been vaccinated.…”
Section: Discussionmentioning
confidence: 99%
“…The ML model based on extreme gradient boosting (XGB) was selected in our study because of its generalizability, low risk of overfitting, high interpretability [25], and high scalability [34]. XGB has been confirmed to be a reliable method for recognizing patterns in other diseases such as lupus erythematosus [16], traumatic brain injury-induced coagulopathy [35], epilepsy [36], diabetes [37], Alzheimer's disease [38,39], HIV [40,41], or different types of cancer [42][43][44][45][46]. We, therefore, used the aforementioned ML technique to determine which factors were most predictive of disease severity in a closed group of patients hospitalized for COVID-19 during the first two months of the pandemic, a time when the population did not yet have herd immunity and had not yet been vaccinated.…”
Section: Discussionmentioning
confidence: 99%