Theoretical predictions have lead to the experimental synthesis of new low dimensional layered structures. Herein we show for the very first time that compounds of carbon monosulfide exhibit a great variety of layered nanostructures, such as chains arrays, monolayers, and thin films. We find that the chains arrays are the most stable because they are mainly dimensionality-driven by the sp 2 hybridization of sulfur and carbon orbitals. Furthermore, the chains arrays are direct gap semiconductors. In contrast to thin films, the monolayers are stable at room temperature with a semiconductor phase followed in energy by a metallic phase. Then, we achieve a semiconductorto-metal phase transition in carbon sulfur monolayers, which can be driven by strain engineering controlling conductivity and carrier mobility. arXiv:1703.02756v1 [cond-mat.mtrl-sci]