The inability to reproduce certain digestive processes in vivo, high research costs and ethical aspects have led to the development of a large number of in vitro digestion models. These models allow us to take into account various factors of modeling complex multistage physiological processes occurring in the gastrointestinal tract, which makes them promising and widely used. A significant part of in vitro methods includes assessment by enzymatic digestion and are based on the calculation of nitrogen remaining after digestion in relation to the initial total nitrogen (according to the Dumas, Kjeldahl method, spectrophotometric or chromatographic method). There are also a number of titrometric methods (pH‑stat), which are mainly used to assess the digestibility of feed, most successfully for aquatic animals due to the simplicity of their digestive tract. Methods for assessing the digestibility of food products by enzymatic digestion have undergone various stages of evolution (since 1947) and have been widely modified by including various enzymes (pepsin, trypsin, pancreatin, erepsin, etc.) in model systems, indices for various products have been determined on their basis (pepsin-digest-residue (PDR) index, 1956; pepsin pancreatin digest (PPD) index, 1964; pepsin digest dialysate (PDD), 1989). As a result, a single protocol was formed to study the digestibility of food — INFOGEST (2014–2019), which includes three stages of digestion (oral, gastric and intestinal). It allows researchers to accurately reproduce the conditions of the human gastrointestinal tract and is widely used by scientists around the world.