2023
DOI: 10.3390/ma16093285
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Axial Compressive Load–Strain Curves of Circular Concrete-Filled Steel Tube Columns Using Long Short-Term Memory Network

Abstract: No study has been reported to use machine learning methods to predict the full-range test curves of circular CFST columns. In this paper, the long short-term memory (LSTM) network was introduced to calculate the axially compressive load–strain curves of the circular CFST columns according to an experiment database of limited scale. To improve the feasibility of input data for the recurrent neural network algorithm, data preprocessing methods and data configurations were discussed. The prediction results indica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 59 publications
0
0
0
Order By: Relevance