2023
DOI: 10.37256/ccds.4120232110
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Barrier Option Price Based on Antithetic Monte Carlo and Machine Learning Methods

Abstract: Option pricing has become a popular topic in the fields of finance and mathematics with the rapid development of stock and option markets. Now, more and more academics, financial companies and investors are attracted to study and do research about it. The theory of option pricing can also be used to price financial instruments with the similar structure to options and contribute to risk control and management. The Black-Scholes model is the basic and famous method applied for different options pricing with mod… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 12 publications
0
0
0
Order By: Relevance
“…Metode seperti Support Vector Regression [8], Random Forest [9], Adaptive Boosting [10] dan Artificial Neural Network [11] telah diterapkan dengan hasil yang bervariasi. Li dan Yan [12] menggunakan kombinasi metode Monte Carlo antithetic dan pembelajaran mesin untuk meningkatkan akurasi harga opsi barrier, menemukan bahwa teknik seperti random forests dan neural networks dapat memberikan estimasi yang lebih akurat dibandingkan dengan metode numerik tradisional.…”
Section: Pendahuluanunclassified
“…Metode seperti Support Vector Regression [8], Random Forest [9], Adaptive Boosting [10] dan Artificial Neural Network [11] telah diterapkan dengan hasil yang bervariasi. Li dan Yan [12] menggunakan kombinasi metode Monte Carlo antithetic dan pembelajaran mesin untuk meningkatkan akurasi harga opsi barrier, menemukan bahwa teknik seperti random forests dan neural networks dapat memberikan estimasi yang lebih akurat dibandingkan dengan metode numerik tradisional.…”
Section: Pendahuluanunclassified
“…The neural networks imitate the features of biological neurons to process the information. Each neuron with weight and threshold adjusted with learning will send a signal if the output is over the threshold; otherwise, there is no message transmitted to the next layer of the networks [42].…”
Section: Malware Detectionmentioning
confidence: 99%