The area under the plasma concentration-time curve from time zero to infinity (AUC(0-inf)) is generally considered to be the most appropriate measure of total drug exposure for bioavailability/bioequivalence studies of orally administered drugs. However, the lack of a standardised method for identifying the mono-exponential terminal phase of the concentration-time curve causes variability for the estimated AUC(0-inf). The present investigation introduces a simple method, called the two times t(max) method (TTT method) to reliably identify the mono-exponential terminal phase in the case of oral administration. The new method was tested by Monte Carlo simulation in Excel and compared with the adjusted r squared algorithm (ARS algorithm) frequently used in pharmacokinetic software programs. Statistical diagnostics of three different scenarios, each with 10,000 hypothetical patients showed that the new method provided unbiased average AUC(0-inf) estimates for orally administered drugs with a monophasic concentration-time curve post maximum concentration. In addition, the TTT method generally provided more precise estimates for AUC(0-inf) compared with the ARS algorithm. It was concluded that the TTT method is a most reasonable tool to be used as a standardised method in pharmacokinetic analysis especially bioequivalence studies to reliably identify the mono-exponential terminal phase for orally administered drugs showing a monophasic concentration-time profile.