2021
DOI: 10.1101/2021.11.05.466718
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Prediction of broad chemical toxicities using induced pluripotent stem cells and gene networks by transfer learning from embryonic stem cell data

Abstract: SUMMARYThe assessment of toxic chemicals using animals has limited applicability to humans. Moreover, from the perspective of animal protection, effective alternatives are also desired. Previously, we developed a method that combines developmental toxicity testing based on undifferentiated human embryonic stem (ES) cells (KhES-3) and gene networks. We showed that ≥ 95% accurate predictions could be achieved for neurotoxins, genotoxic carcinogens, and non-genotoxic carcinogens. Here, we expanded this method to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 71 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?