The urgent demand of sustainable long-lasting batteries has fostered the improvement of extended-use technologies e.g., Li-ion batteries, as well as the development of alternative energy storage strategies like supercapacitors. In this context, new carbon-based materials were developed to attain higher electrochemical performances, even though several of these materials are not obtained by eco-friendly methods and/or in a considerable amount for practical purposes. However, up-to-date reports stand out the scopes achieved by biomass-based carbon materials as energy storage electrodes combining outstanding physicochemical and electrochemical properties with low-pollutant and low-cost production. On this basis, this chapter will expose several aspects of the synthesis of carbon-based electrodes from biomass, focusing on the influence of their surface properties: porosity, crystallinity, and morphology on their electrochemical performance in supercapacitors.