Hick/Hyman Law is the linear relationship between average uncertainty and mean response time across entire blocks of trials. While unequal trial-type frequencies within blocks can be used to manipulate average uncertainty, the current version of the law does not apply to or account for the differences in mean response time across the different trial types contained in a block. Other simple predictors of the effects of trial-type frequency also fail to produce satisfactory fits. In an attempt to resolve this limitation, the present work takes a hierarchical approach, first fitting the block-level data using average uncertainty (i.e., Hick/Hyman Law is given priority), then fitting the remaining trial-level differences using various versions of trial-type frequency. The model that employed the relative probability of occurrence as the second-layer predictor produced very strong fits, thereby extending Hick/Hyman Law to the level of trial types within blocks. The advantages and implications of this hierarchical model are briefly discussed.