Understanding of
interactions between inorganic nanomaterials and
biomolecules, and particularly lipid bilayers, is crucial in many
biotechnological and biomedical applications, as well as for the evaluation
of possible toxic effects caused by nanoparticles. Here, we present
a molecular dynamics study of adsorption of two important constituents
of the cell membranes, 1,2-dimyristoyl-
sn
-glycero-3-phosphocholine
(DMPC) and 1-palmitoyl-2-oleoyl-
sn
-glycero-3-phosphoethanolamine
(POPE), lipids to a number of titanium dioxide planar surfaces, and
a spherical nanoparticle under physiological conditions. By constructing
the number density profiles of the lipid headgroup atoms, we have
identified several possible binding modes and calculated their relative
prevalence in the simulated systems. Our estimates of the adsorption
strength, based on the total fraction of adsorbed lipids, show that
POPE binds to the selected titanium dioxide surfaces stronger than
DMPC, due to the ethanolamine group forming hydrogen bonds with the
surface. Moreover, while POPE shows a clear preference toward anatase
surfaces over rutile, DMPC has a particularly high affinity to rutile(101)
and a lower affinity to other surfaces. Finally, we study how lipid
concentration, addition of cholesterol, as well as titanium dioxide
surface curvature may affect overall adsorption.