Combustion instability is a common thermoacoustic coupling problem in combustion systems, and the pressure oscillations generated inevitably damage the combustion system. Studying the mechanism of combustion instability, especially the triggering problem of combustion instability, is particularly important for understanding combustion instability. This article adopts experimental research methods. The flame transfer function and flame describing function governing pressure pulsation were hereby measured to study the effect of heat release rate fluctuation on acoustic disturbance. By triggering combustion instability through ignition, the growth process of combustion instability was also studied. The results showed that flame pulsation amplitude shows a complex curvature when the frequency is lower than 200 Hz, while the growth rate of pulsation amplitude monotonically decreases as frequencies increase above 200 Hz. According to the considerable self−excited combustion instability tests, the oscillation amplitudes in the limit cycle state are generally greater than 0.4, while the pressure amplitudes in the limited state are less than 0.2, thus verifying the concept of a trigger threshold for low−frequency oscillation. In addition, analysis of the growth rate, the pressure and the attractor of the heat release pulsation observed after the triggering of combustion instability reveals that the triggering of combustion instability is a gradual coupling process between oscillation pressure and heat release rate pulsation.