Background
Glomerular filtration rate is the best indicator of renal function and a predictor of graft and patient survival after kidney transplantation.
Methods
In a single-centre prospective analysis, we assessed the predictive performances of 4 oxidative stress biomarkers in estimating graft function at 6 months and 1 year after kidney transplantation from living donors. Blood samples were achieved on days (D-1, D1, D2, D3, D6 and D8), months (M1, M3 and M6) and after one year (1Y). For donors, a blood sample was collected on D-1. Malondialdehyde (MDA), nitric oxide (NO), glutathione s-transferase (GST), myeloperoxydase (MPO), and creatinine (Cr) were measured by spectrophotometric essays. The estimated glomerular filtration rate by the modification of diet in renal disease equation (MDRD-eGFR) was used to assess renal function in 32 consecutive donor-recipient pairs. Pearson’s and Spearman’s correlations have been applied to filter out variables and covariables that can be used to build predictive models of graft function at six months and one year. The predictive performances of NO and MPO were tested by multivariable stepwise linear regression to estimate glomerular filtration rate at six months.
Results
Three models with the highest coefficients of determination stand out, combining the two variables nitric oxide at day 6 and an MDRD-eGFR variable at day 6 or MDRD-eGFR at day 21 or MDRD-eGFR at 3 months, associated for the first two models or not for the third model with donor age as a covariable (P = 0.000, r2 = 0.599, r2adj = 0.549; P = 0.000, r2 = 0.548, r2adj = 0.497; P = 0.000, r2 = 0.553, r2adj = 0.517 respectively).
Conclusion
Quantification of nitric oxide at day six could be useful in predicting graft function at six months in association with donor age and the estimated glomerular filtration rate in recipient at day 6, day 21 and 3 months after transplantation.