2009
DOI: 10.1016/j.seppur.2009.06.005
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of electrophoretic enantioseparation of aromatic amino acids/esters through MIA-QSPR

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
8
0
2

Year Published

2010
2010
2016
2016

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 13 publications
(11 citation statements)
references
References 27 publications
1
8
0
2
Order By: Relevance
“…Mathematical models relating structural parameters of certain compounds with their electrophoretic parameters can be used to describe and predict compounds separation (quantitative-structure property relationship, QSPR). Different strategies have been used in the literature for developing QSPR for modelling enantioresolution-related information in EKC [16][17][18][19][20][21][22].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Mathematical models relating structural parameters of certain compounds with their electrophoretic parameters can be used to describe and predict compounds separation (quantitative-structure property relationship, QSPR). Different strategies have been used in the literature for developing QSPR for modelling enantioresolution-related information in EKC [16][17][18][19][20][21][22].…”
Section: Introductionmentioning
confidence: 99%
“…This approach has been used to model the relative migration times to that of 6-aminonicotinic acid of 12 aromatic amino acids and alkyl esters of 2-phenylglycine, using (+)-18-crown-6-tetracarboxylic acid as chiral selector [18,19]. Also, the relative migration times of 11 guanidine/imidazoline analogues using α-β-and γ-CD has been modelled [20].…”
Section: Introductionmentioning
confidence: 99%
“…In line with this, a quantitative structure-activity relationship (QSAR) method based on multivariate image analysis (MIA), named MIA-QSAR, has shown to be accurate in estimating bioactivities of a variety of drug-like compounds [15][16][17][18][19][20][21][22]; also, it has been successfully used to model other physical properties, such as NMR chemical shifts [23], electrophoretic profiles [24] and boiling points [25]. This method is based on the relationship of images (pixels, numerically described as binaries), which are chemical structures built using software for chemical drawing, with the respective dependent variables (physical, chemical or biological properties).…”
Section: Introductionmentioning
confidence: 94%
“…19 O método se baseia em utilizar pixels de imagens como descritores; como os pixels podem ser tratados numericamente como binários, a cor branca equivale ao dígito 765 e pixels pretos ao dígito 0, de acordo com o sistema de cores RGB. Em MIA-QSAR, as imagens correspondem a estruturas químicas desenhadas por meio de algum programa para desenho de moléculas, como ChemDraw ou ChemSketch.…”
Section: Mia-qsar (Multivariate Image Analysis Applied To Qsar)unclassified
“…10 Os descritores MIA têm sido aplicados com sucesso não só para correlacionar estruturas químicas com atividades biológicas, [11][12][13][14][15][16] mas também com propriedades físicas, como temperaturas de ebulição, 17 deslocamentos químicos 18 e perfis eletroforéticos. 19 O método se baseia em utilizar pixels de imagens como descritores; como os pixels podem ser tratados numericamente como binários, a cor branca equivale ao dígito 765 e pixels pretos ao dígito 0, de acordo com o sistema de cores RGB. Em MIA-QSAR, as imagens correspondem a estruturas químicas desenhadas por meio de algum programa para desenho de moléculas, como ChemDraw ou ChemSketch.…”
Section: Dunclassified