Prediction of entire thermal degradation process of polymethyl methacrylate infiltrated with kerosene by a modified artificial neural network
Yueqiang Wu,
Zhiyuan Zhao,
Ruiyu Chen
et al.
Abstract:Predicting the entire thermal degradation process of solid combustibles infiltrated with flammable liquids is a challenge at present. In the current study, a novel artificial neural network (ANN) framework containing data preprocessing, data normalization and data transformation is proposed to predict the entire thermal degradation process of polymethyl methacrylate infiltrated with kerosene at three scenarios: (1) fixed kerosene mass fraction with various heating rates, (2) fixed heating rate with various ker… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.