2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) 2020
DOI: 10.1109/isriti51436.2020.9315359
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Forest Fire Occurrence in Peatlands using Machine Learning Approaches

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2
2

Relationship

1
8

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 6 publications
0
5
0
1
Order By: Relevance
“…Konselor perlu bertransformasi menjadi seorang yang mampu memanfaatkan era digital, untuk pengembangan profesi BK. Konselor dituntut untuk menjadi lifelong learner, kreatif, inovatif, reflektif, dan kolaboratif (Rosadi & Andriyani, 2020). Akan tetapi belum semua guru BK memanfaatkan teknologi dalam pemberian layanan.…”
Section: Pendahuluanunclassified
“…Konselor perlu bertransformasi menjadi seorang yang mampu memanfaatkan era digital, untuk pengembangan profesi BK. Konselor dituntut untuk menjadi lifelong learner, kreatif, inovatif, reflektif, dan kolaboratif (Rosadi & Andriyani, 2020). Akan tetapi belum semua guru BK memanfaatkan teknologi dalam pemberian layanan.…”
Section: Pendahuluanunclassified
“…In this study, the BN model with an AUC value of 0.96 showed to be more accurate than the other models in predicting future fires. A similar study [36] examined the application of various machine learning approaches to predict forest fire occurrence in peatlands. The variables collected from topographical and meteorological data from South Kalimantan Province were the time (of data collected), the district area, land surface temperature (LST), wind speed, humidity, height, and NDVI (normalized vegetation index).…”
Section: Systematic Reviewmentioning
confidence: 99%
“…e pink color represents a low fire rate, while the dark red represents a high fire rate. Peatlands are dark red areas with high severity peatlands; peatlands always experience fires every dry season [29,33,37].…”
Section: Dnbr and Rbr Spectral Transformation Capability Formentioning
confidence: 99%