2021
DOI: 10.21203/rs.3.rs-145304/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Prediction of Glass Forming Ability of Bulk Metallic Glasses-Machine-Learning

Abstract: Bulk-Metallic-Glass has been a fascinating class of metallic systems with remarkable corrosion resistance, elastic modulus and wear resistance, while evaluating the glass forming ability has been a very interesting aspect for decades. Machine learning techniques viz., artificial neural networks and random-forest based models have been developed in this work to predict the glass forming ability, given the composition of the bulk metallic glassy alloy. A new criterion of classification of atoms present in a bulk… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?