Abstract:Bulk-Metallic-Glass has been a fascinating class of metallic systems with remarkable corrosion resistance, elastic modulus and wear resistance, while evaluating the glass forming ability has been a very interesting aspect for decades. Machine learning techniques viz., artificial neural networks and random-forest based models have been developed in this work to predict the glass forming ability, given the composition of the bulk metallic glassy alloy. A new criterion of classification of atoms present in a bulk… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.