Abstract:With the increasingly competitive job market, the employment issue for college graduates has received more and more attention. Predicting graduation development can help students understand their suitable graduation development, thus easing the pressure of finding employment after graduation. However, existing research must look into the issue of imbalance and long-tail distribution in student graduation development. This paper proposes a novel hypergraph contrastive learning model based on imbalanced sampling… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.