2018
DOI: 10.3906/elk-1802-50
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of gross calorific value of coal based on proximate analysis using multiple linear regression and artificial neural networks

Abstract: Gross calorific value (GCV) of coal was predicted by using as-received basis proximate analysis data. Two main objectives of the study were to develop prediction models for GCV using proximate analysis variables and to reveal the distinct predictors of GCV. Multiple linear regression (MLR) and artifcial neural network (ANN) (multilayer perceptron MLP, general regression neural network GRNN, and radial basis function neural network RBFNN) methods were applied to the developed 11 models created by different comb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 25 publications
(16 citation statements)
references
References 26 publications
0
12
0
4
Order By: Relevance
“…MLP is a well-known and most commonly used ANN method. In addition, RBFN is one of the other popular ANN methods and has been used successfully in the GCV prediction of coals from the proximate analysis results [18].…”
Section: Methodsmentioning
confidence: 99%
“…MLP is a well-known and most commonly used ANN method. In addition, RBFN is one of the other popular ANN methods and has been used successfully in the GCV prediction of coals from the proximate analysis results [18].…”
Section: Methodsmentioning
confidence: 99%
“…Ayrıca, kömürün GCV'sini tahmin etmek için farklı veri kümeleri ve veri modelleri ile SVR'yi kullanan bazı çalışmalar da bulunmaktadır (Feng et al, 2015;Fu, 2016;Hadavandi, Hower, & Chelgani, 2017;Qi, Luo, Wei, & Fu, 2019;Tan et al, 2015). Diğer yandan, ANN'ler farklı alanlarda gerçek dünyada problemlerini çözmek için yaygın olarak kullanılmaktadır (Açıkkar & Sivrikaya, 2018b;Huang, Liu, & Ren, 2018;Ren & Gao, 2011). Bu çalışmada daha önce ifade edildiği üzere SVR ile karşılaştırma yapmak amacıyla GCV tahmininde üç tip ANN, yani MLP, GRNN ve RBFN kullanılmıştır.…”
Section: Metodolojiunclassified
“…Bir giriş katmanından, bir veya daha fazla gizli katmandan ve bir çıkış katmanından oluşan MLP, ANN yöntemleri arasında esnek, genel amaçlı ve en çok kullanılan bir ağdır (Açıkkar & Sivrikaya, 2018b). Her gizli katmandaki en uygun nöron sayısını bulmak, MLP'nin çözümlenmesi gereken en önemli konularından biridir.…”
Section: Mlp Tabanlı Tahmin Modelleriunclassified
“…It is very difficult to select the most effective method from many prediction models, so we adopt the four most commonly used prediction models for getting the best one. In this study, four prediction models are employed: the autoregressive distributed lag time series model (ARDL) model, stepwise regression (SR) model, neural network (NN) model [22], and deep neural network (DNN) model, respectively.…”
Section: Prediction Modelsmentioning
confidence: 99%