Background
Treatment of femoral neck fractures in patients who are nongeriatric (≤ 60 years) is challenging because of high failure rates. Anatomic parameters influence the biomechanical environment for fracture healing, but their associations with clinical prognosis remains unclear.
Questions/purposes
(1) Which anatomic parameter that is identifiable on pelvic radiographs shows a statistical correlation with a higher risk of clinical failure defined as nonunion, avascular necrosis (AVN), reoperation, and functional failure (decrease in Harris hip score reaching the minimum clinically important difference) in the screw fixation of femoral neck fractures among nongeriatric patients? (2) How does the influence of anatomic parameters on clinical prognosis manifest: directly or mediated by additional mechanisms?
Methods
This retrospective, multicenter study used a nationwide database in China. Between January 2014 and December 2020, we evaluated 1066 patients with femoral neck fractures with a median age of 53 years (interquartile range 46 to 56) and median follow-up period of 62 months. Anatomic parameters including femoral neck-shaft angle (NSA), femoral head radius, femoral neck width, femoral offset, acetabular center-edge angle, and acetabular sharp angle were variables of interest. The primary outcome was clinical failure including nonunion, AVN, reoperation, and functional failure (decrease in Harris hip score reaching the minimum clinically important difference). Risk factors for failure were first filtered using the Bayesian information criterion and then assessed with multiple regression adjusting for confounders. The mediation effect was further explored using model-based causal mediation analysis with a quasi-Bayesian Monte Carlo method.
Results
Of all anatomic parameters we assessed, the contralateral NSA was associated with clinical failure, after adjusting for all potential covariates and confounding variables (adjusted odds ratio 0.92 [95% confidence interval 0.89 to 0.95]; p < 0.001). The optimal threshold for the NSA was 130°, with the highest Youden index of 0.27. Patients with an NSA < 130° (41% [441 of 1066]) demonstrated an increased occurrence of nonunion (15% [68 of 441] versus 5% [33 of 625]; p < 0.001), AVN (32% [141 of 441] versus 22% [136 of 625]; p < 0.001), functional failure (25% [110 of 441] versus 15% [93 of 625]), and reoperations (28% [122 of 441] versus 13% [79 of 625]). The impact of an NSA less than 130° on clinical failure was direct and substantially mediated by the type of displaced fracture (mediation proportion: 18.7%).
Conclusion
In our study of screw fixations for femoral neck fractures among nongeriatric patients, we identified that a contralateral NSA < 130° correlates with an increased risk of clinical failure including nonunion, AVN, functional failure, and reoperation. The effect is either direct or mediated through displaced fracture types. This is important for surgeons in order to recognize the elevated rate of clinical failure and nature of the challenging biomechanical environment, which should guide them in refining surgical details and selecting appropriate fixation and rehabilitation plans. Approaches to managing these fractures require further validation with large-scale clinical trials.
Level of Evidence
Level III, prognostic study.