Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel,
Lea Reusser,
Stephan Margreth
et al.
Abstract:Abstract. Information on soil water potential is essential to assessing the soil moisture state, to prevent soil compaction in weak soils, and to optimize crop management. When there is a lack of direct measurements, the soil water potential values must be deduced from soil water content dynamics that can be monitored at the plot scale or obtained at a larger scale from remote sensing information. Because the relationship between water content and soil water potential in natural field soils is highly ambiguous… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.