Eighth International Conference on Electronic Technology and Information Science (ICETIS 2023) 2023
DOI: 10.1117/12.2682452
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of insulation performance of vacuum glass based on cascade forest model

Abstract: In this paper, a new method is proposed for the intelligent prediction of the thermal insulation performance of vacuum glass, i.e., the use of cascade forest algorithm to detect the heat transfer coefficient (U-value) of vacuum glass. By constructing different intelligent algorithm models, random forest, extreme random forest and cascade forest algorithms are used. By evaluating the proposed method using mean absolute error (MAE), mean square error (MSE) and R-squared value, the cascade forest was evaluated wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?