Abstract:Italian ryegrass (Lolium multiflorum L.) is a highly competitive weed widely disseminated worldwide that affects both summer and winter crops. The development of predictive emergence models can contribute to optimizing weed management. The aim of this study was to develop and validate an empirical emergence model of Italian ryegrass based on soil thermal time. For model development, cumulative emergence in two locations was obtained, and the model was validated with data collected in an experiment conducted in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.