Prediction of Lithium-Ion Battery State of Health Using a Deep Hybrid Kernel Extreme Learning Machine Optimized by the Improved Black-Winged Kite Algorithm
Juncheng Fu,
Zhengxiang Song,
Jinhao Meng
et al.
Abstract:The accurate prediction of lithium-ion battery state of health (SOH) can extend battery life, enhance device safety, and ensure sustained reliability in critical applications. Addressing the non-linear and non-stationary characteristics of battery capacity sequences, a novel method for predicting lithium battery SOH is proposed using a deep hybrid kernel extreme learning machine (DHKELM) optimized by the improved black-winged kite algorithm (IBKA). First, to address the limitations of traditional extreme learn… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.