Background: Handgrip strength (HGS) has been widely studied in clinical and epidemiological settings, but the relationship between HGS and pulmonary function is still controversial. This study analysed pulmonary function and HGS stratified by sex and age in a healthy Chinese Han population, as well as the associations between HGS and pulmonary function parameters. Methods: HGS was measured by a Jamar dynamometer and pulmonary function was tested using a portable spirometer. Frequencies and variables are presented as percentages and means ± standard deviations, respectively. Chi-square tests were used for comparisons of categorical variables, and Student's t-tests or Mann-Whitney U-tests were used for continuous variables. Pearson's correlation coefficients were used to analyse the normally distributed variables, and Spearman correlation coefficients were used to analyse the non-normally distributed variables. Multivariate linear regression models were employed to explore the relationships between HGS and parameters of pulmonary function. The statistical significance was set at p < 0.01. Results: Cross-sectional data were available for 1519 subjects (59.0% females, 57.9 ± 13.3 years old). Males had higher average HGS than females (40.2 vs. 25.0 kg, p < 0.01), as well as better pulmonary function. Both HGS and pulmonary function parameters were significantly inversely correlated with age (r ≤ − 0.30, p < 0.01). The maximum value of vital capacity (VC max), forced expiratory volume in 3 s (FEV 3) and forced vital capacity (FVC) were strongly correlated with HGS among the pulmonary function indices (r = 0.72, 0.70 and 0.69, respectively, p < 0.001). In the multivariate linear regression analysis, HGS and height were positively correlated, while age and pulse pressure were negatively correlated with HGS. In males, the FVC, VC max and FEV3 increased by 0.02 L, 0.023 L and 0.03 L in per 1 kg increase in HGS, respectively. The HGS coefficients for females were smaller than those for males. Conclusions: Both pulmonary function and HGS were inversely correlated with age, and better pulmonary function was associated with greater handgrip strength.