2019
DOI: 10.35940/ijrte.c3952.098319
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Mechanical Properties of Steel using Data Science Techniques

Abstract: Stainless steel is most extensively utilized material in all engineering applications, house hold products, constructions, because it is environment friendly and can be recycled. The principal purpose of this paper is to implement different data science algorithms for predicting stainless steel mechanical properties. Integrating Data science techniques in material science and engineering helps manufacturers, designers, researchers and students in understanding the selection, discovery and development of materi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 4 publications
0
2
0
1
Order By: Relevance
“…Berbagai macam jenis algoritma machine learning yang digunakan untuk mengetahui sifat mekanik material dari komposisi paduannya dan perlakuan panas tanpa harus merusak spesimen. Penggunaan algoritma machine learning seperti Random Forest, Neural Network, dan Decision Tree dalam memprediksi kekuatan tarik baja memberikan hasil prediksi yang baik [13] selain itu, metode machine learning juga terbukti lebih praktis dalam memprediksi kekuatan lelah material berdasarkan lembar data kelelahan [14] .…”
Section: Pendahuluanunclassified
“…Berbagai macam jenis algoritma machine learning yang digunakan untuk mengetahui sifat mekanik material dari komposisi paduannya dan perlakuan panas tanpa harus merusak spesimen. Penggunaan algoritma machine learning seperti Random Forest, Neural Network, dan Decision Tree dalam memprediksi kekuatan tarik baja memberikan hasil prediksi yang baik [13] selain itu, metode machine learning juga terbukti lebih praktis dalam memprediksi kekuatan lelah material berdasarkan lembar data kelelahan [14] .…”
Section: Pendahuluanunclassified
“…Data pada penelitian ini diambil pada periode September 2022 dari website matmatch.com yang merupakan sebuah website informasi material bahan terbesar didunia, website ini terdapat menyediakan 70.000 lebih data material dan di portal website ini, dimungkinkan untuk mengakses informasi disediakan oleh ribuan pemasok bahan dari berbagai jenis, termasuk paduan aluminium (Sandhya, N., Sowmya, V., Bandaru, C. R., & Babu, 2019). Website ini merupakan perpustakaan bahan online akses terbuka , yang terdiri dari ribuan entri.…”
Section: Metode Penelitianunclassified
“…In practice, most of the modelling results in steels and metal alloys presented in the literature concern neural networks with one hidden layer. There are fewer cases of using two [38][39][40][41][42][43] or more hidden layers [30,44].…”
Section: Data Set and Neural Network Topologymentioning
confidence: 99%
“…Various methods of machine learning, including artificial neural networks, were used, among others, by Geng et al [70] for modelling CCT diagrams of tool steels and Sourmanil and Garcia-Mateo [71] and Rahaman et al [28] for modelling the start temperature of the martensitic phase transformation in steel. Sandhya et al [44] used artificial neural networks and other regression methods to model the tensile strength of corrosion-resistant steels, including Random Forest, Decision Tree, linear regression, and K-Nearest Neighbors.…”
Section: Model Selection and Overfitting Problemmentioning
confidence: 99%