Prediction of Overall Disease Burden in (y)pN1 Breast Cancer Using Knowledge-Based Machine Learning Model
Seok-Joo Chun,
Bum-Sup Jang,
Hyeon Seok Choi
et al.
Abstract:Background: We aimed to construct an expert knowledge-based Bayesian network (BN) model for assessing the overall disease burden (ODB) in (y)pN1 breast cancer patients and compare ODB across arms of ongoing trials. Methods: Utilizing institutional data and expert surveys, we developed a BN model for (y)pN1 breast cancer. Expert-derived probabilities and disability weights for radiotherapy-related benefit (e.g., 7-year disease-free survival [DFS]) and toxicities were integrated into the model. ODB was defined a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.