Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis. Methods This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities. Results The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models. Conclusion The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders. Graphical Abstract
Background Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis. Methods This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities. Results The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models. Conclusion The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.