2010
DOI: 10.1079/pavsnnr20105018
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of plant diseases through modelling and monitoring airborne pathogen dispersal.

Abstract: Many plant diseases that spread by airborne inocula have had major economic and social impacts worldwide. Plant diseases account for 16% of the yield losses in eight of the most important food and cash crops. Numerical models and monitoring networks have been developed to forecast the spread of these diseases both locally and over long distances. The epidemics of these airborne diseases depend on production of infectious propagules, their aerial transport, specific infectiousness and finally their reproduction… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
12
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(14 citation statements)
references
References 0 publications
0
12
0
2
Order By: Relevance
“…Tools to forecast the risk of the disease allow to implement treatments and to control it effectively. Many numerical models and monitoring networks have been developed to forecast the spread of some diseases locally and over long distances [24,43,44]. Frequently, these models use weather variables and plant phenology but do not consider the presence of pathogen in field, being this the third support for the disease.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Tools to forecast the risk of the disease allow to implement treatments and to control it effectively. Many numerical models and monitoring networks have been developed to forecast the spread of some diseases locally and over long distances [24,43,44]. Frequently, these models use weather variables and plant phenology but do not consider the presence of pathogen in field, being this the third support for the disease.…”
Section: Discussionmentioning
confidence: 99%
“…Prediction models based on meteorological variables are an opportunity for the environmentally friendly application of chemical products. However, the precise modelling of plant disease is particularly difficult because it requires specialist staff to identify critical biophysical processes driving disease spread based on time and location [24].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…В опубликованных моделях развития грибной инфекции в посевах число рассматриваемых стадий развития патогена и/или инфекции варьирует от 1 до 8 с медианным значением 3.5 (De Wolf, Isard, 2007). Среди них моделируются распространение спор патогена (McCartney et al, 2006;Pan et al, 2010), попадание их на поверхность листа и прикрепление, прорастание споры и проникновение через устьица в субэпидермальное про странство листа, развитие гриба до формирования но вого поколения спор (Lew, 2011;Balmant et al, 2015;SugaiGuérios et al, 2016). В других моделях некоторые биологические стадии «сворачиваются» и рассматриваются процессы инфицирования, латентного периода и по явление пустул (раскрытых мешочков с новыми спора ми) (Audsley et al, 2005).…”
Section: моделирование развития инфекции ржавчины на пшеницеunclassified
“…Масштабы моделируемых процессов могут варьировать в широких пределах. Так, в некоторых моделях процессы формирования микроклимата и воздушных потоков в посевах и над ними, важные для описания роста, развития и распространения патогенных организмов, имеют пространственную детализацию в один метр при размере моделируемого посева до нескольких километров (McCartney et al, 2006;Pan et al, 2010). В случае же описания развития патогенеза на растении пространственное поведение прорастающей споровой трубки на поверхности листа моделируется с точностью до нескольких микрон (Setten et al, 2015).…”
Section: моделирование развития инфекции ржавчины на пшеницеunclassified