Prediction of Postnatal Growth Failure in Very Low Birth Weight Infants Using a Machine Learning Model
So Jin Yoon,
Donghyun Kim,
Sook Hyun Park
et al.
Abstract:Accurate prediction of postnatal growth failure (PGF) can be beneficial for early intervention and prevention. We aimed to develop a machine learning model to predict PGF at discharge among very low birth weight (VLBW) infants using extreme gradient boosting. A total of 729 VLBW infants, born between 2013 and 2017 in four hospitals, were included. PGF was defined as a decrease in z-score between birth and discharge that was greater than 1.28. Feature selection and addition were performed to improve the accurac… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.