Résumé -Bien que les aspects hydrodynamiques soient d'une importance primordiale lors de la conception et du fonctionnement d'un réacteur gaz-liquide-solide à lit fixe arrosé, les méthodes de calcul prédictif proposées sont restées fort rudimentaires. La plupart des études portant sur ce sujet ont été menées dans des conditions quasi atmosphériques alors que les réacteurs industriels fonctionnent à des pressions élevées. C'est seulement récemment que quelques résultats expérimentaux ont été obtenus à des hautes pressions, et des corrélations ont été proposées dans ces conditions pour prédire la transition entre les régimes ruisselant et pulsé, la perte de pression et le taux de rétention de liquide. L'objectif de cet article est double. D'une part, une synthèse y est présen-tée ; elle fait état des connaissances acquises sur les divers aspects hydrodynamiques du réacteur triphasique à lit fixe, incluant les récents développements réalisés à hautes pressions. D'autre part, les modèles et les corrélations actuels de transitions de régimes, de la perte de pression et du taux de rétention de liquide sont soumis à une analyse critique en confrontant leurs prédictions à l'ensemble des données expérimentales obtenues pour un large intervalle de la pression de fonctionnement du réacteur. Des conclusions objectives ont pu être tirées concernant les aptitudes des corrélations et des modèles actuels à être utilisées pour les calculs de conception des réacteurs triphasiques à lit fixe industriels. Malheureusement, il apparaît qu'aucun modèle de transitions entre les régimes ruisselant et pulsé n'est satisfaisant. Seule la corréla-tion empirique de Larachi et al. (1993) s'avère être jusqu'à présent la méthode la plus précise pour prédire la position de la frontière entre les régimes ruisselant et pulsé dans un large domaine de la pression de fonctionnement. Par ailleurs, aucune corrélation empirique de la perte de pression et du taux de rétention de liquide ne correspond à une erreur relative moyenne de prédiction acceptable. Seul le modèle phénoménologique étendu d 'AlDahhan et al. (1998) semble constituer une technique satisfaisante pour la prédiction des deux paramètres hydrodynamiques en régime ruisselant. Néanmoins, son principal inconvénient réside dans la nécessité de déter-miner préalablement les deux coefficients du modèle au moyen d'expériences sur des écoulements monophasiques gazeux. De telles expériences restent difficiles à réaliser dans la pratique. Il est cependant regrettable de constater qu'aucune des ces méthodes, qui se distinguent par leurs résultats, n'est basée sur une approche physique des phénomènes hydrodynamiques permettant d'améliorer la connaissance de ces écoulements et de prédire leur comportement en dehors des domaines de conditions expérimentales testées. De ce travail, il ressort la nécessité d'appliquer les outils classiques de la mécanique des fluides diphasique à la description de ces écoulements, en apportant une attention particulière aux phénomènes d'interactions hydrodynamiques auxqu...