Prediction of prostate cancer recurrence after radiotherapy using a fused machine learning approach: utilizing radiomics from pretreatment T2W MRI images with clinical and pathological information
Negin Piran Nanekaran,
Tony H Felefly,
Nicola Schieda
et al.
Abstract:Background: The risk of biochemical recurrence (BCR) after radiotherapy for localized prostate cancer (PCa) varies widely within standard risk groups. There is a need for low-cost tools to more robustly predict recurrence and personalize therapy. Radiomic features from pretreatment MRI show potential as noninvasive biomarkers for BCR prediction. However, previous research has not fully combined radiomics with clinical and pathological data to predict BCR in PCa patients following radiotherapy.
Purpose:… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.