Prediction of puncturing events through LSTM for multilayer tissue
Bulbul Behera,
M Felix Orlando,
R S Anand
Abstract:Recognizing penetration events in multilayer tissue is critical for many biomedical engineering applications, including surgical procedures and medical diagnostics. This paper presents a unique method for detecting penetration events in multilayer tissue using Long Short-Term Memory (LSTM) networks. LSTM networks, a form of recurrent neural network (RNN), excel at analyzing sequential data because of their ability to hold long-term dependencies. The suggested method collects time-series insertion force data fr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.