2022
DOI: 10.1109/ojits.2022.3162526
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Queue Dissipation Time for Mixed Traffic Flows With Deep Learning

Abstract: Queue dissipation has been extensively studied about traffic signalization, work zone operations, and ramp metering. Various methods for estimating the intersection's queue length and dissipation time have been reported in the literature, including the use of car-following models with simulation, vehicle trajectories from GPS, shock-wave theory, statistical estimation from traffic flow patterns, and artificial neural networks (ANN). However, most of such methods cannot account for the impacts of interactions b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(3 citation statements)
references
References 42 publications
(39 reference statements)
0
2
0
1
Order By: Relevance
“…Simpang menjadi titik kritis dalam regulasi lalu lintas karena merupakan pertemuan berbagai arus kendaraan. Pengaturan yang baik pada simpang, seperti penggunaan lampu lalu lintas, perintah berhenti, atau prioritas tertentu, membantu mengkoordinasikan aliran dari berbagai arah, meminimalkan risiko tabrakan, dan memastikan aliran lalu lintas yang lebih efisien (Chen et al, 2022). Pengaturan yang tepat pada simpang membantu mengurangi risiko kecelakaan, karena dengan aturan yang jelas, pengemudi memiliki prediksi yang lebih baik tentang perilaku kendaraan lain di sekitarnya, mengurangi kebingungan dan risiko kesalahan (Hu et al, 2023).…”
Section: Pendahuluanunclassified
“…Simpang menjadi titik kritis dalam regulasi lalu lintas karena merupakan pertemuan berbagai arus kendaraan. Pengaturan yang baik pada simpang, seperti penggunaan lampu lalu lintas, perintah berhenti, atau prioritas tertentu, membantu mengkoordinasikan aliran dari berbagai arah, meminimalkan risiko tabrakan, dan memastikan aliran lalu lintas yang lebih efisien (Chen et al, 2022). Pengaturan yang tepat pada simpang membantu mengurangi risiko kecelakaan, karena dengan aturan yang jelas, pengemudi memiliki prediksi yang lebih baik tentang perilaku kendaraan lain di sekitarnya, mengurangi kebingungan dan risiko kesalahan (Hu et al, 2023).…”
Section: Pendahuluanunclassified
“…Second, the CNN part is utilized to extract diferent features. CNN is a deep neural network that employs convolutional computation [44,45]. It has been shown to be efective in extracting features from matrices and accelerating the training process [46].…”
Section: Cnn-lstmmentioning
confidence: 99%
“…The deep learning methodology has been shown in numerous applications to be a valuable approach in high-dimensional spaces, but it is known to be dataintensive [58], which in the context of transportation activitybased models means a greater number of executions of the models. Outside the activity-based applications, deep learning has nevertheless been applied in the transportation domain, e.g., to estimate the intersection's queue length and dissipation time [59] or to enhance prediction fairness in spatial-temporal demand forecasting of ride-hailing services [60].…”
Section: B Bayesian Optimizationmentioning
confidence: 99%