Prediction of Rheological Properties of Flour From Physicochemical Properties Using Multiple Regression Techniques and Artificial Neuronal Networks
Ali Cingöz,
Sinan Nacar
Abstract:This study has two main objectives: (i) to determine the physicochemical and rheological properties of different flours and (ii) to estimate the alveograph parameters obtained as a result of experimental studies. In this context, physicochemical (protein, ash, falling number, wet gluten, gluten index, Zeleny, and delayed sedimentation) and alveograph parameters (P, L, G, W, P/L, and IE) of 150 different bread and pastry flours were determined. Multiple regression analysis (MRA) and artificial neural network (A… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.