2021
DOI: 10.11301/jsfe.20577
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Sake Component Values Using E-nose and E-tongue Data by Machine Learning

Abstract: We estimated the quality component values of the commercial Japanese sake Junmai Ginjo by using electronic (e)-nose and e-tongue data. Regression analysis methods were applied to predict the components. Characteristic features of Junmai Ginjo such as acidity, amino acid content, glucose and nine volatile components were used as objective variables. Explanatory variables were the 99 peak data obtained by an e-nose and seven sensor data obtained by an e-tongue. The prediction accuracy by the partial least square… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance