Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs in vitro. The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and in vivo functionality of organs. However, the lack of methods for large-scale production of homogeneous spheroids has hindered the upscaling of tissue fabrication. In this work, we introduce a fully automated platform, designed for high-throughput sorting of 3D spheroids based on label-free analysis of brightfield images. The compact platform is compatible with standard biosafety cabinets and includes a custom-made microscope and two fluidic systems that optimize single spheroid handling to enhance sorting speed. We use machine learning to classify spheroids based on their bioprinting compatibility. This approach enables complex morphological analysis, including assessing spheroid viability, without relying on invasive fluorescent labels. Furthermore, we demonstrate the efficacy of transfer learning for biological applications, for which acquiring large datasets remains challenging. Utilizing this platform, we efficiently sort mono-cellular and multi-cellular liver spheroids, the latter being used in bioprinting applications, and confirm that the sorting process preserves viability and functionality of the spheroids. By ensuring spheroid homogeneity, our sorting platform paves the way for standardized and scalable tissue fabrication, advancing regenerative medicine applications.
End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs in vitro. The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and in vivo functionality of organs. However, the lack of methods for large-scale production of homogeneous spheroids has hindered the upscaling of tissue fabrication. In this work, we introduce a fully automated platform, designed for high-throughput sorting of 3D spheroids based on label-free analysis of brightfield images. The compact platform is compatible with standard biosafety cabinets and includes a custom-made microscope and two fluidic systems that optimize single spheroid handling to enhance sorting speed. We use machine learning to classify spheroids based on their bioprinting compatibility. This approach enables complex morphological analysis, including assessing spheroid viability, without relying on invasive fluorescent labels. Furthermore, we demonstrate the efficacy of transfer learning for biological applications, for which acquiring large datasets remains challenging. Utilizing this platform, we efficiently sort mono-cellular and multi-cellular liver spheroids, the latter being used in bioprinting applications, and confirm that the sorting process preserves viability and functionality of the spheroids. By ensuring spheroid homogeneity, our sorting platform paves the way for standardized and scalable tissue fabrication, advancing regenerative medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.